skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piergiovanni, AJ"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. We introduce a new convolutional layer named the Temporal Gaussian Mixture (TGM) layer and present how it can be used to efficiently capture longer-term temporal information in continuous activity videos. The TGM layer is a temporal convolutional layer governed by a much smaller set of parameters (e.g., location/variance of Gaussians) that are fully differentiable. We present our fully convolutional video models with multiple TGM layers for activity detection. The extensive experiments on multiple datasets, including Charades and MultiTHUMOS, confirm the effectiveness of TGM layers, significantly outperforming the state-of-the-arts. 
    more » « less
  3. In this paper, we propose a convolutional layer inspired by optical flow algorithms to learn motion representations. Our representation flow layer is a fully-differentiable layer designed to capture the `flow' of any representation channel within a convolutional neural network for action recognition. Its parameters for iterative flow optimization are learned in an end-to-end fashion together with the other CNN model parameters, maximizing the action recognition performance. Furthermore, we newly introduce the concept of learning `flow of flow' representations by stacking multiple representation flow layers. We conducted extensive experimental evaluations, confirming its advantages over previous recognition models using traditional optical flows in both computational speed and performance. The code is publicly available. 
    more » « less